
REPORT DOCUMENTATION PAGE 
*-orm Apprcvec 

- \j r\ \    L/H. AxU   UM: 

|  FINAL - 30 SEP 92 TO 29 NOV 95 

"i,   TITLE AND SUT-TTTTE" «—-—————      > ———.     ________—— I 5.   FUNDING NUMBERS 

' RESEARCH IN APPEARANCE DESCRIPTION FOR MACHINE VISION j   F49620-92 -C-0073 
i i   8875/00 

STEVE SHAFER 

CARNEGIE MELLON UNIVERSITY 
SCHOOL OF COMPUTER SCIENCE 
PITTSBURGH, PA  15213 

::KE5S;ES} AFOSR-TR.96 

°'85 
AFOSR/NM 
110  DUNCAN AVE, SUITE B115 
BOLLING AFB DC 20332-0001 

AMD ADDRESS(ES) r u. >• w;v :> v' 

F49620-92-C-0073 

APPROVED FOR PUBLIC RELEASE: 
DISTRIBUTION UNLIMITIED. 

SEE REPORT FOR ABSTRACT 

19960502 052 
!• It. KUI'/.SLR OF PAGES- 

SECURITY  CLASSiFI'ATIOf'i'    ! U,.    SECURITY  CLASsil 
■OF F.e-ORT | OF THiS  PAGE 

UNCLASSIFIED    f UNCLASSIFIED 

]£. PRiCE CODt 

15.    SECURITY Q-A$SICI 
0= ABSTRACT 

UNCLASSIFIED 

TiO;>     ( 2J. LtlViiTATION OF ABSTRACT 

I    UNCLASSIFIED 



Final Report 
ARPA Order: 8875 

Program Code: 2E20 

Contractor: Carnegie Mellon University 

Effective Date of Contract: 30 September 1992 

Contract Expiration Date: 30 September 1995 

Amount of Contract Dollars: $199,577 

Contract Number: F49620-92-C-0073 

Principal Investigator: Steve Shafer 412-268-2527 

Program Manager: Abe Waksman 

Short Title of Work: Appearance Description 

31 January 1996 

Sponsored by Defense Advanced Research Projects Agency 

DARPA Order No. 8875 

Monitored by AFOSR Under Contract No. F49620-92-C-003 



page 2 

1. Report Summary 

1.1. Summary of Proposed Research 

The key barrier to application of machine vision in unconstrained environments is the complexity 
of image formation in the world and the resultant difficulty of characterizing it concisely. If we 
could create a general yet concise description of image formation, we would have a vocabulary 
for discussing the complexity of specific scenes and the assumptions of specific machine vision 
approaches. In this research, the investigators are attempting to develop such a "vocabulary" 
consisting of a mathematical formalism for describing scenes, and examples of programs that 
utilize this formalism and data that is described using it. The data collection is not only for the 
purpose of this research contract, but also as a way of archiving and broadcasting high-quality 
image data from the Calibrated Imaging Laboratory at CMU, that may be useful for other 
researchers in image understanding. 

1.2. Technical Results Summary 

In the past three years of research, we have made tremendous progress towards a totally new 
concept for image segmentation based on the consideration of optical physics, rather than the 
heuristic clustering methods of the past. Our concept for the new algorithm is as follows: 

1. Partition the image into "Uniform Chromaticity Regions", UCRs, of pixels with a 
uniform chromaticity but possibly varying intensity. These are supposed to approximate 
"appearance patches" of uniform physical explanation. 

2. For each UCR, enumerate the plausible hypotheses about the formation of that region of 
pixel values. 

3. Now, considering regions in pairs, keep only those pairs of hypotheses that provide the 
simplest explanation of that pair of UCRs. 

Our work in the first year consisted of defining a reasoning framework we call the "taxonomy" of 
appearance elements; formalizing the concept of UCRs; enumerating the most plausible 
hypotheses for a single UCR based on the appearance taxonomy; and identifying a preliminary 
filtering criteria for hypotheses of adjacent regions. Taken together, these formed the backbone of 
a new algorithm for physics-based image segmentation. 

During the second year, our principal accomplishments were the beginning of implementation of 
our method based on a representation of hypotheses, the segmentation of images into UCRs, and 
a systematic method for testing compatibility of hypotheses; and the production of community 
resources in the form of calibrated datasets and the Computer Vision Home Page. In addition, we 
now have a growing number of publications about this work. 

One focus of our work in this reporting period has been on the initial partitioning of the image 
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into Uniform Chromaticity Regions (UCRs), which will be suitable building blocks for the 
reasoning process as the segmentation progresses. We have adopted normalized color as a basis 
for grouping, with a raster-scan region-growing algorithm. 

We also developed a more systematic analysis of what it means for hypotheses to be 
"compatible". We defined that to mean that the pair of hypotheses must have all identical 
elements, except that a discontinuity exists in exactly one element of the hypothesis. Based on this 
definition, we created a table that tells how to make such a test for every candidate pair of 
hypotheses. 

During 1994 we also generated our first calibrated dataset we called CIL-0001. As per a 
discussion with various ARPAIU Investigators and Oscar Firschein, Program Manager for IU at 
ARPA, we decided to collect a stereo/motion dataset rather than a color dataset as our first 
exercise. This dataset is therefore not so directly related to what is now the focus of this contract, 
which is color image segmentation. However, it was felt that a stereo/motion dataset would be far 
more valuable to the many researchers in those topics under ARPA sponsorship, and thus the 
dataset is presented as a service to the ARPA IU community. We have since added two more 
datasets and the Computer Vision Home Page. 

During 1994 we published a technical report [2] and a conference paper[3] on the work in image 
segmentation. We also prepared and submitted a new paper to the ICCV-95 conference [4]. 

In the past year, 1995, our principal achievement is the implementation of the segmentation 
framework we outlined. This implementation focused on the most important pair of hypotheses 
we identified, piece-wise uniform dielectric objects under white illumination. 

We tested both direct and implicit methods of analyzing adjacent hypotheses for compatibility, 
and found three implicit methods that provided a robust and effective measure. We now use two 
physical characteristics, the reflectance ratio and the direction of the gradient of image intensity, 
and an analysis of the intensity profile using information theoretic criteria. These three tests allow 
us to test the compatibility of two hypothesis regions more quickly, robustly, and in more complex 
scenes than direct instantiation techniques such as shape-from-shading and illuminant direction 
analysis. 

We also showed how to combine the results of our three compatibility tests to generate a 
hypothesis graph, which reflects both adjacency in the image and the compatibility of hypotheses. 
From this hypothesis graph, it is possible to extract the best segmentation(s) of the image. 

Our most recent work involves extracting segmentations from the hypothesis graph and 
integrating the components developed over the last several years into a complete segmentation 
system. By modifying a step-wise optimal merging algorithm to work on a multi-layer graph, we 
are able to extract the "best" segmentations of an image from the hypothesis graph, which 
contains information about the compatibility of adjacent hypotheses. By integrating this into our 
segmentation framework we now have a system to provide intelligent segmentations of images 
containing multi-colored objects. Furthermore, the framework is easily expandable to include 
more hypotheses, which increases the complexity of images the system can successfully and 
intelligently segment. 
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During 1995 we prepared and submitted four papers. The first is a technical report, detailing the 
compatibility tests and generation of the hypothesis graph [5]. A short version of this report 
appeared in the 1995 IUW proceedings [6]. The second, to appear in the 1996 IEEE Conference 
on Computer Vision One, is based on the technical report, but updated to show the final 
segmentations extracted from the hypothesis graph [7]. The third is a journal article submitted to 
Computer Vision and Image Understanding describing our entire theory and results to date [9]. 
The last, submitted to the Int'l Workshop on Object Recognition for Computer Vision 
demonstrates the necessity for a segmentation system that identifies objects, or coherent surfaces 
in a scene in order to obtain accurate object models from single images. We show that our 
framework provides such a segmentation [8]. 

1.3. Implications for Further Research 

We have presented a framework for segmentation of complex scenes using multiple physical 
hypotheses for simple image regions. A consequence of this framework was a proposal for a new 
approach to the segmentation of complex scenes into regions corresponding to coherent surfaces 
rather than merely regions of similar color. Our work has progressed to an implementation of this 
new approach and we have shown example segmentations of scenes containing multi-colored 
piece-wise uniform objects. By using this new approach we are able to intelligently segment 
scenes with objects of greater complexity than previous physics-based segmentation algorithms. 
Our results show that by using general physical models we can obtain segmentations that 
correspond more closely to objects in a scene than segmentations found using only color. 

These results have implications in model acquisition, object recognition, and the general analysis 
of color images. Furthermore, our framework is easily expandable. By incorporating more tools 
for analysis and more hypotheses, we can expand the range and complexity of images we can 
intelligently segment. This future work is fundamental to achieving effective image 
understanding and scene analysis. 

2. Technical Results 

2.1. A Taxonomy of Elements of Image Formation 

In the proposal for this research, we presented a new approach to describing appearance elements 
- the shape of the surface, its optical properties, and the incident illumination - using functional 
notation. The general functions we presented are useful from a theoretical point of view, but they 
are not practical for reasoning about scene interpretation because they are "too precise". Instead 
of exact quantitative descriptions of the appearance elements, for scene interpretation we would 
be better off with overall categories such as "plastic", "metal", "diffuse illumination", "rough 
surface", etc. Such categories would correspond more closely to the human experience of vision, 
and to recognize them in general images would be a noteworthy achievement. 

What would be most desirable is to have, for each of the scene elements, a categorization into an 
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ordered set of categories, from simplest to most complex. Then, when presented with an image to 
interpret, we could seek the simplest overall combinations of appearance elements to explain that 
image. Of course, this begs the question of what we mean by "simplicity". Since we lack any 
basis for answering this on physics grounds, we will merely appeal to intuition in developing and 
ordering our categories. Our experiments, later in this research program, will tell us whether we 
need to refine our category structure. 

2.1.1. Categories for Surface Shape 

A natural set of categories for surface shape is to begin by classifying surfaces as to whether they 
are curved, and if so, what degree of curvature they exhibit. Our approach is to classify surfaces 
according to the number of non-zero principal curvatures they exhibit, and further identify the 
case of identical curvatures, as follows: 

Planar: Surfaces with zero curvature. 

Cylindrical: Surfaces with one non-zero principal curvature. 

Spherical: Surfaces with two non-zero principal curvatures, identical in value. 

General Curved: Surfaces with two non-zero principal curvatures. 

Initially, we will further simplify by grouping all the non-planar surface categories into a single 
category. In the case of surface shape, unlike the properties described below, there is little need to 
appeal to the underlying formalism of the definition of surface in our notation, that is, as an 
embedding S(u,v)^>(x,y,z) mapping two-dimensional coordinates (w,v) to three-dimensional 
coordinates (x,y,z) over a subset E of the u-v manifold. 

2.1.2. Categories for Incident Illumination 

We categorize the illumination by reference to the incident light energy field, in our notation 
L+(x,y,z,Bx,Qy,X,s,t) representing the amount of energy incident at point (x,y,z) from direction 
(0x,6y) with wavelength X at Stokes (polarization) parameter 5 at time t. We begin by assuming no 
changes over time, so we can simplify to L+(x,y,z,Bx,Qy,Ks). According to Figure 1, we then have 
several subcategories representing different simplifications of the light energy field. 

2.1.3. Categories for Surface Optical Properties 

We also categorize the surface optical properties based on our proposed transfer function, 
T(x,v,z,0x

+,0y
+,X,+,5+,9x",ey",?i",5",O, which describes the distribution of all exitant light from a 

point invoked from a unit of incident illumination in any direction, wavelength, and polarization 
state. By assuming non-fluorescent material, no polarization selectivity, and no time-variance, this 
can be simplified at a point (x,y,z) to T(0x

+,0y
+,0x~,0y~,A,), which is a familiar form of the Spectral 

Bi-Directional Reflectance Distribution Function [10]. As shown in Figure 2, we define further 
categories depending on the surface roughness, diffuse reflection distribution, and color of the 
specular and diffuse reflection. 
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Figure 1: Categories of the incident light energy 
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Figure 2: Taxonomy of Spectral BRDFs 

2.2. Appearance Patches 

Our new concept for image segmentation begins with the notion of an appearance patch, by 
which we mean a surface in the scene, or a piece of a surface, which exhibits coherence in the 
illumination, shape, and optical properties, i.e. in all three elements of our appearance description 
formalism. It is our goal to identify such appearance patches in the image, and to ascribe to them 
one or more most plausible explanations. The appearance patch is a fundamental concept because 
each such patch ought to have a single explanation, and the boundaries of the patch are the 
boundaries of applicability of that explanation. 

At this point, we are careful not to be too strict in defining coherence, but simply to say it is some 
kind of uniformity, structure, or statistical regularity in the nature of the appearance description 
functions. Future research will be needed to determine exactly what constitutes useful coherence. 

We have already defined a hypothesis, in our proposal, as a tuple of instantiations of the 
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appearance description functions for the illumination, object shape, and optical properties. Now, 
we add the concept of a hypothesis set, which is the set of hypotheses currently under 
consideration to explain a single appearance patch. An appearance patch, together with its 
attendant hypotheses, we call a hypothesis region. 

In the course of processing, we imagine three steps: 

4. Identify appearance patches in the image. 

5. For each one, propose all plausible hypotheses to form a hypothesis set. 

6. By looking at adjacent regions, identify compatible and incompatible hypotheses. 
Through this process, hopefully most hypotheses can be rejected so that only one or a 
small number remain at each region. 

All three of these steps will require further research, and indeed, we don't even know at this time 
if they are possible to achieve. 

And now, we are in a position to define what we mean by a segmentation: A segmentation is a set 
of hypothesis regions, each containing a single hypothesis, which are consistent with each other, 
and which explain all the regions of the image. In other words, a segmentation consists of a set of 
hypotheses which cover the image, providing a unique and plausible explanation of the 
illumination, shape, and material optics at each pixel. The segmentation process may produce one 
or more such segmentations, because in many cases there will be ambiguities that cannot be 
resolved by low-level vision. Still, this definition of segmentation is a major step forward in the 
science of image understanding. It is based on essentially objective criteria, and gives a much 
richer description of the scene and the objects in the scene than has been proposed by any 
segmentation program in the past. 

2.3. Uniform Chromaticity Regions 

We define a uniform chromaticity region [UCR] to be a connected set of pixels that possess 
uniform chromaticity and possibly varying brightness (Figure 3). A UCR corresponds to a linear 
cluster, as defined by Klinker et al.[\2]. As such, a more general definition of a UCR is a 
connected set of pixels whose covariance matrix in color space has a single non-zero eigenvalue, 
whose eigenvector is related to the chromaticity of the region. Because it allows for varying 
brightness within a region, a UCR is able to capture more of the relevant coherence between 
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neighboring pixels than simple uniform regions. 

Figure 3: Mug divided into idealized UCRs (by hand) 

Klinker et al [11] note that a UCR, or linear cluster, can represent two distinct objects if both are 
dark or poorly illuminated. In our segmentation method, however, we initially assume that a UCR 
represents a single surface patch under a single illumination environment. This requires a form of 
coherence from the physical elements generating the UCR. Clearly, it is possible to construct an 
image with UCRs that do not have such coherence in the physical world, and we realize that our 
current approach will not correctly handle such situations. 

The benefit derived by using UCRs is that they are groupings of pixels that we can reasonably 
assume to correspond to a single appearance patch in the physical world, setting constraints on the 
associated hypotheses. These constraints are that over the patch the transfer functions are coherent 
and the illumination environments are similar. Because it is a single appearance patch, it is, by 
definition, a single surface. Figure 3 shows an idealization of the cup image divided into UCRs. 

By identifying UCRs in the image, we have taken the first step in the segmentation process by 
linking pixels with appearance patches in the scene. The next step is to begin to identify the 
relevant physical explanations, or hypotheses, for the appearance patches corresponding to the 
identified UCRs. 

2.4. Fundamental Hypotheses 

An explanation for the color of a physical appearance patch of uniform chromaticity can be 
described in terms of several basic properties: the illumination environment, the material (body 
reflection and surface reflection), and the color source(s). Given a set of fundamental values of 
illumination, material, and color source, a finite list of hypotheses can be derived giving multiple 
explanations for this single UCR. This basic list consists of 42 fundamental hypotheses, each of 
which can explain the color of the patch. 

Upon closer examination of these 42, it is clear that not all hypotheses are equally likely in the 
real world. For example, attributing the color of a green patch to a green material under a white 
light source is more common than attributing the color to a white material under a green light 
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source. In order to achieve a more structured ordering of the hypotheses, a tree structure was 
developed, producing a taxonomy of physical appearance. This taxonomy is given in Figure 4. 

The first branching in the taxonomy deals with material type, specifically, whether the material is 
Lambertian (just body reflection), dielectric (body reflection and surface reflection), or metal 
(surface reflection only). In the general case, it is not possible to prune the tree here, as all three 
material types exist. If, however, a vision system is working in a limited environment, it may be 
possible to set probabilities for each branch or eliminate one of the branches altogether. 

The second branching depends upon the illumination environment. If synthetic images (for 
example, images created by a ray tracing program) are considered, it is not possible to prune the 
tree here. If, however, the task is taking place within the real world, the point source branch can be 
pruned, as it is highly unlikely that such a source would naturally exist. This would reduce the 
number of total hypotheses from 42 to 28. 

The third branching determines the color source of the patch. In the case of the Lambertian and 
metal surfaces, no pruning can be undertaken. It is highly unlikely, however, that a dielectric 
would have a uniform body reflection and a colored surface reflection in any domain except 
synthetic images. This allows another four hypotheses to be pruned, leaving 24 fundamental 
hypotheses for real world applications. 

Besides providing for an orderly pruning of the list of fundamental hypotheses, this taxonomy is 
also useful for: 

• Benchmarking and classifying existing and new physics-based vision programs. 

• Indicating when different physics-based vision techniques are applicable. 

• Developing scene descriptions for a data base. 

• Pointing out unfulfilled needs in physics-based vision and indicating a future agenda for 
research. 

2.5. Relations Among Adjacent Regions 

With our concept of Fundamental Hypotheses, we have the outline of a segmentation algorithm: 
(1) partition the image into appearance patches of uniform color; (2) assign all Fundamental 
Hypotheses to each patch; and (3) look for sets of hypotheses that can explain groups of patches 
in the image. As a first step towards #3, we have developed a table (Table 1) that shows which 
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hypotheses might be compatible with which other hypotheses at an adjacent region. 
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Table 1: Compatible Hypotheses for Adjacent Regions 

What we mean by "compatible" is itself a subject of some study. Suppose we have a hypothesis 
HI at one region, and hypothesis H2 at an adjacent region. We can always form hypothesis 
H1+H2 to describe the pair of regions. This new hypothesis describes a shape which has two 
independent parts; material optics that differ from one region to the other; and an illumination 
environment that has two distinct natures over the two regions. This would be completely 
uninteresting. 

On the other hand, suppose that both hypotheses HI and H2 had the same shape, and the same 
material optics, and that they differed only in that one assumed a bright light source and the other 
did not. This would be tremendously significant; the hypothesis H1+H2 would be just a tiny bit 
more complex than either of its elements (but far less complex than the two elements taken 
separately), and it might be interpreted as a "shadow falling across a single surface". Similarly, if 
HI and H2 have the same shape and illumination, they might represent a single surface with 
different colored regions. So, what we seek are pairs of hypotheses such that explaining them 
together is simpler than explaining the two of them separately. 

Our compatibility table was based on several criteria that try to capture what we mean by having a 
single surface composed of several appearance patches: 

Hypotheses of differing materials should not be combined. 
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• Hypotheses of differing color sources should not be merged. 

• Hypotheses of differing shape should not be merged. 

• "Colored metal" hypotheses of differing chromaticity and similar illumination should 
not be merged. 

• If the hypotheses differ in their chromaticity and the illumination is the color source, 
then hypotheses with diffuse illumination environments should not be merged. 

This table of compatibility may not capture all of the criteria needed for effective image 
segmentation. But, the fact that it is fairly sparse gives us hope that it will in fact yield a dramatic 
reduction in the number of hypotheses to be considered as possible image segmentations. 

2.6. Illustrating a Hypothesis 

Our "hypotheses" for image region interpretation consist of three elements: 

• A shape function, which maps 2D surface coordinates to 3D world coordinates 

• An illumination environment, which maps the incident light onto a hemisphere around 
the surface 

• A transfer function, which describes how the incident light is transformed into exitant 
light 

We have a new way of depicting these elements of a hypothesis, by means of several small image 
elements: 

• The shape function is shown by a wire-frame representing a grid on the surface 

• The illumination environment is depicted by a disk representing a perpendicular 
projection of the illumination hemisphere onto the plane of the surface 

• The transfer function is shown by a little image of a sphere with the given transfer 
function, in an environment consisting of a checkerboard beneath the sphere, a black 
"sky" above, with a white point light source in the "sky" above and behind the camera's 
view. 

These elements are depicted in Figures 30-39 of the technical report [2]. All the elements work 
well except that the sphere used to show the transfer function is a rather simplified view of the 
true complexity of the transfer function. However, it does serve to distinguish the most important 
cases (colored v. white, metal v. dielectric, smooth v. rough). 
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2.7. Example Worked by Hand 

The technical report also includes our first attempt to formalize our reasoning framework by 
working through a complete example by hand. The image in this example is simply a sphere 
containing three colored patches — two green areas with a blue stripe separating them. The goal is 
to show how a system could use our hypothesis framework in a general way to reason that the 
correct interpretation is that of a single shape element and illumination environment, with three 
differently colored patches of the same material type. 

In our example, we consider only the ten best Fundamental Hypotheses for each region, which 
include all the most common situations. This would naively yield 100 hypothesis combinations 
for two regions, or 1000 for the three taken together. However, with our reasoning framework for 
pairwise interpretation of regions, described in an earlier report, we find only twelve 
combinations for each pair of regions, or 20 for all three taken together. This reduction by a factor 
of 50 is a strong vindication of our reasoning approach. Furthermore, by applying some 
reasonable heuristics to this set of possible interpretations, they can be grouped into rough 
categories from most likely to least likely. In our grouping, the only combined hypothesis in the 
top category is in fact the most likely one. 

Table 2:. Final set of hypotheses for the example image 

Hypothesis Top Region Middle Region Bottom Region 

1 Tier 1 Diel/CS=BR/Uni./Curved Diel/CS=BR/Uni./Curved Diel/CS=BR/Uni./Curved 

2 Tier 2 Diel/CS=BR/Dif./Curved Diel/CS=BR/Dif./Curved Diel/CS=BR/Dif./Curved 

3 Diel/CS=BR/Uni/Planar Diel/CS=BR/Uni/Planar Diel/CS=BR/Uni/Planar 

4 Diel/CS=BR/Dif./Planar Diel/CS=BR/Dif./Planar Diel/CS=BR/Dif./Planar 

5 Metal/CS=IL/gf/Curved Metal/CS=IL/gf/Curved Metal/CS=IL/gf/Curved 

6 MetaVCS=IL/gf/Planar Metal/CS=I17gf/Planar Metal/CS=IL/gf/Planar 

7 Tier 3 Diel/CS=IL/gf/Curved Diel/CS=IL/gf/Curved Diel/CS=IL/gf/Curved 

8 Diel/CS=I17gf/Planar Diel/CS=IL/gf/Planar Diel/CS=IL/gf/Planar 

9 Tier 4 Diel/CS=BR/Uni ./Curved Diel/CS=BR/Uni./Curved Diel/CS=BR/Diff/Curved 

10 Diel/CS=BR/Uni./Curved Diel/CS=BR/Dif./Curved Diel/CS=BR/Uni./Curved 

11 Diel/CS=BR/Uni./Curved Diel/CS=BR/Dif./Curved Diel/CS=BR/Dif./Curved 

12 Diel/CS=BR/Dif./Curved Diel/CS=BR/Uni./Curved Diel/CS=BR/Uni./Curved 

13 Diel/CS=BR/Dif./Curved Diel/CS=BR/Uni./Curved Diel/CS=BR/Diff/Curved 

14 Diel/CS=BR/Dif./Curved Diel/CS=BR/Dif./Curved Diel/CS=BR/Uni./Curved 

15 Diel/CS=BR/Uni ./Planar Diel/CS=BR/Uni./Planar Diel/CS=BR/Diff/Planar 

16 Diel/CS=BR/Uni./Planar Diel/CS=BR/Dif./Planar Diel/CS=BR/Uni./Planar 

17 Diel/CS=BR/Uni ./Planar Diel/CS=BR/Dif./Planar Diel/CS=BR/Dif./Planar 
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Table 2:. Final set of hypotheses for the example image 

Hypothesis Top Region Middle Region Bottom Region 

18 Diel/CS=BR/Dif./Planar Diel/CS=BR/Uni./Planar Diel/CS=BR/Uni./Planar 

19 Diel/CS=BR/Dif./Planar Diel/CS=BR/Uni./Planar Diel/CS=BR/Diff/Planar 

20 Diel/CS=BR/Dif./Planar Diel/CS=BR/Dif./Planar Diel/CS=BR/Uni./Planar 

The attached technical report [2] illustrates and explains the process in more detail. 

2.8. Representation of Hypotheses 

To represent hypotheses in the computer, we need data structures that not only capture the 
parameterization of each element of a hypothesis, but also allow hypotheses to be tested for 
compatibility and possibly merged into larger hypotheses. 

For a surface patch, if planar, we simply represent a point on the plane and a direction vector for 
the surface normal. For a curved patch we use a 4x4 Bezier patch; these are easy to fit to data, and 
at the edges they line up along cubic Bezier curves, thus facilitating merger into larger 
hypotheses. One problem with the Bezier patches is than when merged, that result is not another 
Bezier patch, so this leads to a structure of Bezier patches rather than a single ever-growing patch. 

For illumination hypotheses, in simple parameterized cases such as totally diffuse light, we just 
store the parameters. For the most complex case, general illumination, we use a map of the color 
at each direction. For intermediate cases, which are perhaps the most interesting, we store a list of 
extents and colors. Any of these representations allows easy merger with another hypothesis of 
the same type; combinations can get messy and would require a "coercion" of data into the more 
general type. 

Similarly, for the transfer function, in a simple case such as a metal or Lambertian dielectric 
surface, we store just the parameters; but for more complex cases we can store a list of extents and 
colors or even a map of the reflectance properties at every point. 

These representations are all summarized in Figure 5. The implementation is in C++ on a 
Macintosh Quadra. 
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Hypothesis 

• Shape 
• enumerated type s € {planar,curved} 
• plane type p = list of (polnt,normal,extent) 
• curve type c = list of (4x4 bezier curve,extent) 

• mapping function M{u,v) —> (x, y, z) ) 

• inverse function M    (x, y, z) —> (u,v) 

• Illumination 
• enumerated type 1 e {diffuse,uniform,general,mixed} 
• diffuse type d = (color,extent) 
• uniform type u = (color,bitmap,extent) 
• general type g = (pixel map,extent) 
• mixed type m = list of 

• diffuse type I 
• uniform type I 
• general type 

• Transfer function 
• enumerated type r e {metal,dielectric} 
• metal type m = (color.roughness) 
• dielectric type d 6 

• uniform = (color,roughness,extent) I 
• piecewise = list of (color,roughness,extent) I 
• general = (pixmap) 

Figure 5: Representation of a Hypothesis 

2.9. Finding UCRs 

We define a UCR to be a region of constant chromaticity (hue and saturation), but possibly 
varying intensity of pixel values. UCRs are important because they capture what is important in 
our reasoning process, and eliminate what is invariant. 

What is important in our reasoning process is to identify points with the same combination of 
illumination and surface coloration, so that these points can be grouped into a single unit with a 
single hypothesis set to explain them as a group. Their adjacency to other such groups, with 
clearly distinct coloration of the illumination or surface, is critical to the reasoning process we 
will apply. At the same time, we must not build into the grouping any assumption about the actual 
color of the illuminant or objects, because we know that these may vary from image to image or 
even within a single image (particularly the illuminant). The UCR accomplishes these purposes. It 
makes clear where the boundaries of coloration lie, without confounding them with shape 
boundaries (associated with intensity changes). Further, if the illuminant is not white, its 
chromaticity will interact with that of the UCR is in principle well suited for our use as our 
building-block regions in the image. 

To determine UCRs, we abandon the usual R-G-B space and jump instead into normalized color 



page 16 

space, defined by dividing the R, G, and B values by their sum R+G+B. We threshold these values 
to decide whether the color is too close to black to be reliably classified on the basis of 
chromaticity. 

We partition the image by making a single raster-scan over it. During this scan, if we detect a 
suitable seed patch for a new region, which is not yet part of a region, then we interrupt the raster 
scan and grow the newly discovered region. Then, having marked all the pixels in that new 
region, we resume the raster scan. 

We consider a patch of pixels suitable for use as a seed region when its central pixel and its 8- 
connected neighbors have similar normalized color, and none of these pixels already are marked 
as belonging to another region. The growing process considers the 4-connected neighbors of all 
pixels in the region, and if they are close enough to the average normalized color of the seed 
patch, and not too dark to be reliable, then they are incorporated into the new region. 

This method of segmentation does a nice job of finding regions to grow, but one problem is that it 
leaves rather ragged edges. Since we must know which regions are adjacent to which other 
regions, we have to deal somehow with these unlabeled pixels that separate the cleanly defined 
regions. That is a task for the future. 

2.10. Analyzing Compatibility of Hypotheses 

In the past, we did not have a very systematic definition for what it means for two hypotheses to 
be "compatible"; we only had a heuristic sense that they ought to have some elements in common. 
Now, we have a cleaner definition: We consider two hypotheses to be "compatible" iff they share 
all elements except one, which exhibits a discontinuity coincident with the region boundary. Note 
that such a criterion is actually much stricter than our previous table (Figure 6), which by its gray 
boxes merely indicates what might be compatible hypotheses. Further tests are needed to 
determine if specific hypotheses corresponding to those cases are indeed compatible by the above 
definition. 

* Each square represents 
2 resulting hypotheses: 
planar, or curved. 

Col. Diel 

W. Diel. W. Metal 

C. Diel. C. Metal 

WD WU CG CGWU CG CG 

Figure 6: Possibly Compatible Fundamental Hypotheses 

We have conducted a study of these cases, and we have a new table that shows how to conduct 
these tests in a systematic way (Table 3). The "Comments" in this table are actually not merely 
comments, but represent our insight so far about how one might go about constructing a program 
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to perform the required test. We are now preparing to undertake such a test for the most important 
single case, that of two dielectric surface patches of the same surface, with different colors. 

Table 3: Analysis of Merger Table 

Input Region 1 Input Region 2 Discontinuity Comments 

white diffuse/col. 
dielectric 

white diffuse/col. 
dielectric 

transfer function self-shadowing, 2-D cues 

white diffuse/col. 
dielectric 

colored general/ 
col. dielectric 

illumination known object color restricts color of region 
2, 2-D cues 

white uniform/ 
col. dielectric 

white uniform/ 
col. dielectric 

transfer function shape-from-shading, illuminant direction 
& color, roughness estimation 

white uniform/ 
col. dielectric 

colored general/ 
col. dielectric 

illumination shape-from-shading, known object color 
restricts color of region 2, color constancy, 
roughness estimation 

colored general/ 
col. dielectric 

colored general/ 
col. dielectric 

illumination or transfer 
function 

orientation-from-color, roughness, illumi- 
nant color & direction estimation 

colored general/ 
col. dielectric 

colored general/ 
white dielectric 

transfer function illuminant direction estimation, illuminant 
color known from region 2, roughness, ori- 
entation-from-color 

colored general/ 
white dielectric 

colored general/ 
white dielectric 

illumination roughness estimation, orientation-from- 
color 

white uniform/ 
colored metal 

colored general/ 
colored metal 

illumination roughness estimation, known metal color, 
2-D cues 

colored general/ 
colored metal 

colored general/ 
colored metal 

illumination roughness estimation, estimation of metal 
color, 2-D cues 

colored general/ 
white metal 

colored general/ 
white metal 

illumination roughness estimation, 2-D cues 

The significance of this table is that it shows where and how various methods for physics-based 
computer vision can be blended together to make a single system whose reasoning and 
interpretive power is far greater than any one method taken in isolation. The physics-based vision 
community has been working blindly for so many years, without a good problem statement to 
constrain their search for useful algorithms; we believe that this table represents such a constraint 
and provides a map for the definition of what algorithms will be "useful" to see in the future. 

2.11. Stereo Image Datasets 

One of the topics of greatest interest in the ARPA Image Understanding community is the 
determination of shape by analysis of stereo or motion image sets. Many such datasets exist, 
however they are almost always lacking in ground truth [13]. Therefore, there is no way to judge 
or measure the quality of the resulting interpretations by computer programs. In an effort to 
advance a more scientific approach, the CIL has used its unique facilities to collect a dataset with 
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careful calibration of both the imaging conditions and the scene itself. 

The imaging facilities used for this data collection include a high-precision cooled CCD camera 
with very low geometric and radiometric noise, a high-precision motion jig capable of 0.01° 
angular steps and 0.001 in translation steps in all six degrees of freedom. The ground truth data 
(3D point coordinates) are collected by a pair of surveyor's theodolites with an estimated 
precision of about 0.3mm in each dimension. 

The images are available by anonymous FTP, World Wide Web, and e-mail. The 11 images in the 
dataset were acquired as indicated in that document in an arrangement that allows them to be used 
simulate lateral stereo, vertical stereo, multi-camera arrays, and forward camera motion by one or 
two cameras. 

The ground truth data consists of two elements. First, for each of the camera positions, images 
were taken of grids at varying distances, and a Tsai-Lenz camera calibration was performed to 
determine the extrinsic parameters (pose) and intrinsic parameters (focus etc.) of the camera. The 
results of these calibrations are presented in the dataset. Second, we measured the 3D position of 
23 points with the surveyors' theodolites, and also located them by hand in each of the images. 
These 3D and 2D coordinates are also reported in the dataset. Whenever possible, these points 
include "triangle sets" of at least 3 points on a single flat surface, so that interpolated depth results 
can be evaluated across every pixel of the included triangle rather than just at the corner points 
themselves. 

We hope and believe this dataset will be of fundamental value to the ARPA IU community 
(including our own work in the areas of stereo and motion). However, due to the extraordinary 
difficulty and cost of obtaining such data, we cannot realistically expect to acquire such datasets 
very frequently. A reasonable estimate would be one to two man-months to acquire this dataset, 
and while we have tried to automate the process as much as possible, the fact is that there remains 
a high degree of human action involved, and usually several attempts must be made before any 
particular aspect of the data collection effort can be pronounced successful. 

2.12. The New Stereo Datasets 

The new stereo datasets, CIL-0002 and CIL-0003, are similar to our CIL-0001 dataset, but differ 
in the nature of the scene. We have found that one of the key tasks in stereo is the reconstruction 
of large surface patches, which the CIL-0001 dataset did not facilitate. In CIL-0002, we have a 
single surface in the scene, so this dataset is much more useful for those people trying to study 
interpolation of depth and disparity. And, in CIL-0003, we have a combination in which there are 
a very small number of fairly large surfaces, so that the interpolation over large regions is 
combined with 3D shape modeling. By having a small number of surfaces, the ground truth points 
in CIL-0002 and CIL-0003 allow reconstruction of the interpolated depth values more easily than 
our previous dataset CIL-0001 which had a far more complex scene. 
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2.13. The Computer Vision Home Page 

The "Computer Vision Home Page" is our own initiative to try to set up one centralized location 
with pointers to all aspects of image understanding. These include pointers to research group 
descriptions, pointers to individuals, lists of available datasets for algorithm testing, hardware 
sources, upcoming conferences, and executable demonstrations of vision programs and cameras. 
The success of such a page depends mostly on the completeness of its listings, so we are 
encouraging other sites to submit to us the information that will help flesh this out and make it a 
valuable community resource. 

2.14. Compatibility Testing by Shape-From-Shading 

Our table of compatible hypotheses does not tell when two hypotheses must be compatible; it 
only tells when they might be compatible. Therefore, while an empty box definitively rules out a 
combination, a gray box does not mean that this pair of hypotheses must always be accepted as 
compatible; it only means there is a possibility. A further test is needed for each such gray box, to 
tell whether this particular pair of hypotheses for this particular pair of regions, is actually 
compatible or not. Thus, the discriminative power of our framework (already 50:1 from the white 
squares in the table) will be considerably enhanced when we have added all of these additional 
tests to our program. Indeed, not only will there be fewer incorrect hypotheses being propagated, 
but we hope and believe that it will become hard for the system to ever maintain an incorrect 
hypothesis for a very long time. 

We have begun to implement such tests by selecting the one most important gray box from the 
table and implementing a test for that one case: the case of two regions of colored dielectric 
material, both curved surfaces, under diffuse illumination. This is the situation describing, for 
example, a single curved surface with two colored patches side-by-side, such as a ball with a 
stripe on it, or a cup with a colored design on it, or a print fabric, or a piece of paper with a picture 
drawn on it. 

For two such hypotheses to be considered "compatible", we already know that the transfer 
functions differ in color, but not in material type. So far, so good. But, what about the surface 
shape and the illumination environment? These must now be tested for compatibility. 

For shape compatibility, the obvious solution is to apply a Shape-From-Shading method, of which 
there are over a dozen in the literature, to calculate the shape of each region. If these are the same 
along their common edge, then the regions are compatible based on shape. The biggest problem is 
that most methods for Shape-From-Shading begin by assuming that they will process the entire 
image, or at least a closed region surrounded by a tangency contour. In other words, they cannot 
process a piece of a surface; it is all or nothing. However, in our case, we must process pieces of 
surfaces, not necessarily surrounded by tangency boundaries. Therefore, we cannot utilize most of 
the methods that are published. Instead, we use a "local" method, based on some pointwise 
approximation to the surface shape. The best method appears to be that of Bichsel and Pentland 
[14], so this is what we use. After fitting the two region shapes, we look at the resulting common 
boundary. We must allow for affine scaling and translation in the z direction in assigning a 
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compatibility score. 

For the illumination environment, both regions better indicate the same illumination situation. 
Since Shape-From-Shading methods generally assume point lighting, we adopt this view. Then, 
we need a method to estimate the angle of the light source based on the shading analysis. The best 
method we have found for this is that of Zheng and Chellappa [15]. So, we apply this to each 
region to determine the angular difference between the two computed light source directions. If 
they are close, we give the region a good compatibility score. 

One thing we do not yet have a good idea for is how to combine the scores for different tests at a 
region. On the face of it, multiplying them would seem be appropriate. But, this would penalize 
hypothesis combinations for which lots of tests exist. Instead, we may decide to take a "worst- 
case result" of the set of compatibility results. 

If we can estimate and represent each hypothesis element, merging adjacent regions involves 
looking at the table of possible mergers and then directly comparing the values of each hypothesis 
element. We attempted to implement the direct instantiation approach for the hypotheses (Colored 
plastic, White Uniform illumination, Curved) and (White plastic, White Uniform illumination, 
Curved) for which some tools of analysis do exist for finding both the shape and illumination of a 
scene. 

Our conclusion was that the basic problem with the direct instantiation method is that it requires 
region-based analysis. Existing tools for analyzing the intrinsic characteristics of a scene cannot, 
in general, be used on small regions of an image because it violates basic assumptions necessary 
for the tools to function properly. Furthermore, if we attempt to generalize direct instantiation to 
other hypotheses or more complex situations, we are currently limited by the lack of image 
analysis tools. While other approaches to shape-from-shading may overcome some of these 
difficulties in the future, for now we take a different approach. 

2.15. Compatibility by Implicit Instantiation 

An alternative to direct instantiation of hypotheses is to use the knowledge constraints provided 
by the hypotheses to find physical characteristics that can differentiate between pairs of regions 
that are part of the same object and pairs of regions that are not. As these physical characteristics 
are generally local, they are more appropriate for region-based analysis than the previously 
mentioned direct-instantiation techniques. We call this method implicit instantiation. 

2.15.1. Reflectance Ratio 

One physical characteristic we use is the reflectance ratio for nearby pixels as defined by Nayar 
and Bolle [16]. The reflectance ratio is a measure of the difference in transfer function between 
two pixels that is invariant to illumination and shape so long as the latter two elements are similar. 
If the shape and illumination of two pixels pj and p2 are similar, then the reflectance ratio, defined 
in equation (1), where I] and I2 are the intensity values of pixels pj and p2, reflects the change in 
albedo between the two pixels [16]. 
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/1+/2 
(1) 

For each border pixel pu in hj that borders on h2 we find the nearest pixel p2; in h2. If the regions 
belong to the same object, and therefore have similar shape and illumination but differing transfer 
functions, the reflectance ratio should be the same for all pixel pairs (Pn,p2i) along the hj,h2 

border. A simple measure of constancy is the variance of the reflectance ratio. If the two 
hypotheses being tested are part of the same object, this variance should be small, due mostly to 
the quantization of pixels, noise in the image, and small-scale texture in the scene. If, however, h{ 

and h2 are not part of the same object, then the illumination and shape are not guaranteed to be 
similar for each pixel pair, violating the specified conditions for the characteristic. Differing shape 
and illumination should result in a larger variance in the reflectance ratio. We select an expected 
variance based upon the noise, variance in object's transfer functions, and quantization effects and 
use this expected variance to differentiate between these two cases. Table 4 shows the results of 
this operator when applied to the image of a stop-sign and cup shown in Figure 7. 

(a) (b) 
Figure 7: (a) Image of a red and white stop-sign and a green cup taken in the Calibrated 

Imaging Laboratory, CMU. (b) initial segmentation of the image 
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Table 4: Reflectance ratio for stop-sign and cup image 

Region 1 Region 2 \i (avg. RR) a2 P(a2<I2) 

Sign Letter S .4463 .0004 1.0 

Sign Letter T .4449 .0005 1.0 

Sign Letter 0 .4503 .0004 1.0 

Sign Letter P .4541 .0006 1.0 

Sign Cup .2107 .0125 0.0 

Sign Pole .1709 .0710 0.0 

Letter 0 Ohole -.4358 .0008 1.0 

Letter P Phole -.4562 .0004 1.0 

2.15.2. Gradient Direction 

The direction of the gradient of image intensity can be used in a similar manner to the reflectance 
ratio. The direction of the gradient is invariant to the transfer function for piece-wise uniform 
dielectric objects-except due to border effects at region boundaries. Therefore, by comparing the 
gradient direction of border pixel pairs for two adjacent regions we obtain an estimate of the 
similarity of the shape and illumination. To avoid border effects, the algorithm first calculates the 
gradient direction of non-border pixels and then grows the results to include border pixels. 

As with the reflectance ratio, we sum the squared difference in the gradient directions of adjacent 
border pixels from two hypotheses to find the sample variance for each hypothesis pair. We then 
use this variance to differentiate hypotheses pairs that are likely to be part of the same surface 
from those that are not. Figure 8 shows a visualization of the gradient direction errors for the 
image of two-spheres. 

Figure 8: Result of gradient direction analysis on a synthetic image of two 
spheres. Darker borders indicate greater error. 
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2.15.3. Intensity Profile Analysis 

So far, we have examined only calculated physical characteristics of the image, not the actual 
image intensities. The intensity profiles contain a significant amount of information, however, 
which we attempt to exploit with the following assertion: if two hypotheses are part of the same 
object and the illumination and shape match at the boundary of the hypotheses, then, if the scale 
change due to the albedo difference is taken into account, the intensity profile along a scanline 
crossing both hypotheses should be continuous. Furthermore, we should be able to effectively 
represent the intensity profile across both regions with a single model. If two hypotheses are not 
part of the same object, however, then the intensity profile along a scanline containing both 
hypotheses should be discontinuous and two models should be more appropriate to represent it. 

To demonstrate this property, consider Figure 9(b), which shows the intensity profile for the 
scanline from A to A'. We can calculate the average reflectance ratio along the border to obtain the 
change in albedo between the two image regions. By multiplying the intensities from A" to A by 
the average reflectance ratio we adjust for the difference in albedo. As a result, for this particular 
case the intensity profile becomes smooth. On the other hand, for the scanline B to B', shown in 
Figure 9(b) the curves are not smooth even when the intensities are adjusted. 

A  B B" B' 

Polynomial 
(green) 

Intensity 
(blue) 

(c) 

(a) Error (red) 

Figure 9: Test image shown in (a). Graphs (b) and (c) are the intensity curves and least- 
squares polynomial for the image segments A-A' and BrB', respectively. 

Rather than use the first or second derivatives of the image intensities to find discontinuities, we 
take a more general approach which maximizes the amount of information used and is not as 
sensitive to noise and small-scale texture in the image. Our method is based upon the following 
idea: if two hypotheses are part of the same object then it should require less information to 
describe the intensity profile for both regions with a single model than to describe the regions 
individually using two. We use the Minimum Description Length [MDL], as defined by Rissanen 
[17], to measure complexity, and we use polynomials of up to order 5 to approximate the intensity 
profiles. The formula we use to calculate the description length of a polynomial model is given in 
equation (2), where xn is the data, 0 is the set of model parameters, k is the number of model 
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parameters, and n is the number of data points [17]. 

)L = -logP(x"|9)+|logi (2) 

Our method for a single scanline is as follows. 

7. Model the intensity profile on scanline s0 for hypothesis hj as a polynomial. Use the 
MDL principle to find the best order polynomial (we stop looking after order 5). Assign 
Ma the minimum description length. 

8. Model the intensity profile on scanline s0 for hypothesis h2 as a polynomial. Again, use 
the MDL principle to find the best order and assign its MDL to Mb. 

9. Model the scaled intensity profile of scanline s0 for both hi and h2 as a polynomial, find 
the best order using MDL, and assign the smallest MDL to Mc. 

10. Compare (Ma + Mb) to Mc. To normalize the results of this test to the range [0,1], we use 
the measure of merit given by (3), 

Mc-(Ma + Mb) 

Mc+(Ma + Mb) 

and any result >1.0 gets set to 1.0. 

To obtain a robust measure for a region pair, we average the result of this procedure over all 
scanlines containing a border pixel, looking either vertically or horizontally depending upon the 
local border tangent. We then compare this average to the median likelihood and take the more 
extreme value (towards 0 or 1 depending on whether the average is less than or greater than 0.5, 
respectively). For more discussion of the profile analysis, see [5]. 

2.16. Creating the Hypothesis Graph 

Once all possible hypothesis pairs are analyzed we generate a hypothesis graph in which each 
node is a hypothesis and edges connect all hypotheses that are adjacent in the image. We then 
assign to each edge the likelihood-between 0 and 1-that the two hypotheses it connects are part 
of the same object. We use the results of the analysis tests to assign weights to edges that represent 
compatible hypotheses. An example hypothesis graph for the image of two-spheres is shown in 
Figure 10. All other edges have a weight of 0.0, indicating that they should not be merged in any 
segmentation. 
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Figure 10: Hypothesis graph for the synthetic test image shown in above right. The 
numbered solid edges indicate the likelihoods of merging adjacent regions. Dashed edges 
indicate incompatible hypotheses with a likelihood of 0. All adjacent hypotheses have a 

"not-merge" edge (not shown) with likelihood 0.5. Note, as more hypotheses are included, 
the hypothesis graph simply gets more levels. 

How best to combine the results of different tests is still an open question. For our current 
implementation we use a weighted average of the results of the three tests—reflectance ratio, 
gradient direction, and profile analysis—to get the likelihood of a merger. 

Note, however, that each edge actually has two weights associated with it. The weight assigned to 
the edge is a likelihood that the two hypotheses are part of the same object and should be merged 
in a segmentation. There always exists the alternative that the two hypotheses are not part of the 
same object and should not be merged in a segmentation. In order to find "good" segmentations, 
we must somehow assign a weight to the not-merge alternative. We select a value of 0.5 as the 
cost of not merging two hypotheses. This is a logical value for the cost of not-merging because it 
means that not-merging two hypotheses is better than merging them if their likelihood of merging 
is less than 0.5. For more discussion of the hypothesis graphs, see [5]. 

2.17. Extracting Segmentations 

Extracting segmentations from a single-layer graph of nodes and probabilities has been 
accomplished by both LeValle & Hutchinson, and Panjwani & Healey for the segmentation of 
range images and textured surfaces [18] [19]. They used a step-wise optimal algorithm, at each 
step merging the most likely two nodes until some threshold was reached—either the number of 
regions or a likelihood threshold. 

We use essentially the same algorithm. However, the addition of more layers to the graph adds 
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some new twists. For a more complete discussion, see [8]. One difference is that there will almost 
always be more than one "best" segmentation-defined as the segmentation with the maximum 
sum of the log likelihoods of all of the edges within that segmentation. We would like to be able to 
identify all of these best segmentations. Furthermore, we would like to find a set of segmentations 
in which each hypothesis is represented at least once. 

Our solution to this problem is to find the best segmentation of N different graphs, where N is the 
number of hypotheses in the image. The basic idea is to set up each graph by selecting one 
hypothesis and making that the only hypothesis for its region. This forces the segmentation to 
include it. This results in N different segmentations, where each hypothesis is guaranteed to be 
included in at least one segmentation. The most likely segmentation out of this group will contain 
the best grouping of image regions. Because all discontinuous region pairs have a likelihood of 
0.5, however, there will almost always be other equally likely segmentations with the same 
grouping of regions, but different hypotheses for the individual groups. Figure 11(d), for example, 
shows the set of final segmentations for the image of two spheres. Note that, in the absence of 
other information, there are four equally likely final segmentations. However, for this example all 
four segmentations have the same region groupings. 

Planar 

Figure 11: (a) synthetic image of two spheres, (b) initial segmentation, (c) final region 
grouping of top segmentations, (d) illustration of the hypotheses chosen for the top 

segmentations. Solid lines indicate merging, dashed lines indicate no merge. The left 
sphere can be either a planar or curved colored dielectric under white light, as can the 

right, giving four top final segmentations. 

The raw images, initial segmentation, and final segmentation for several test images taken in the 
Calibrated Imaging Laboratory are shown in Figure 12. The result of our system is a set of region 
groupings that corresponds more closely to objects in the scene, combined with a high-level 
description of the form of the illumination and transfer function of those objects. Such a 
segmentation is much more appropriate for model acquisition and general scene analysis than 
previous segmentation techniques. Some simple demonstrations of this are given in [8]. 
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Figure 12: Region groupings of the best segmentations extracted from the hypothesis 
graphs for some example images taken in the Calibrated Imaging Laboratory. The left 

image is the raw data, the center image is the initial segmentation, and the right image is 
the region grouping for the best segmentation extracted from the hypothesis graph. 
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